On quasi-classical limits of DQ-algebroids

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-derivations and quasi-algebroids

Axioms of Lie algebroid are discussed. In particular, it is shown that a Lie quasi-algebroid (i.e. a Lie algebra bracket on the C∞(M)-module E of sections of a vector bundle E over a manifold M which satisfies [X, fY ] = f [X, Y ] + A(X,f)Y for all X, Y ∈ E , f ∈ C∞(M), and for certain A(X,f) ∈ C∞(M)) is a Lie algebroid if rank(E) > 1, and is a local Lie algebra in the sense of Kirillov if E is...

متن کامل

Quasi-derivations and QD-algebroids

Axioms of Lie algebroid are discussed. In particular, it is shown that a Lie QD-algebroid (i.e. a Lie algebra bracket on the C∞(M)-module E of sections of a vector bundle E over a manifold M which satisfies [X, fY ] = f [X, Y ] + A(X,f)Y for all X, Y ∈ E , f ∈ C∞(M), and for certain A(X,f) ∈ C∞(M)) is a Lie algebroid if rank(E) > 1, and is a local Lie algebra in the sense of Kirillov if E is a ...

متن کامل

Classical quasi-primary submodules

In this paper we introduce the notion of classical quasi-primary submodules that generalizes the concept of classical primary submodules. Then, we investigate decomposition and minimal decomposition into classical quasi-primary submodules. In particular, existence and uniqueness of classical quasi-primary decompositions in finitely generated modules over Noetherian rings are proved. More...

متن کامل

Uniformly classical quasi-primary submodules

In this paper we introduce the notions of uniformly quasi-primary ideals and uniformly classical quasi-primary submodules that generalize the concepts of uniformly primary ideals and uniformly classical primary submodules; respectively. Several characterizations of classical quasi-primary and uniformly classical quasi-primary submodules are given. Then we investigate for a ring $R$, when any fi...

متن کامل

Classical Field Theory on Lie Algebroids: Multisymplectic Formalism

The jet formalism for Classical Field theories is extended to the setting of Lie algebroids. We define the analog of the concept of jet of a section of a bundle and we study some of the geometric structures of the jet manifold. When a Lagrangian function is given, we find the equations of motion in terms of a Cartan form canonically associated to the Lagrangian. The Hamiltonian formalism is als...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2017

ISSN: 0010-437X,1570-5846

DOI: 10.1112/s0010437x16007855